Python特征降維知識點總結
1、PCA是最經典、最實用的降維技術,尤其在輔助圖形識別中表現突出。
2、用來減少數據集的維度,同時保持數據集中對方差貢獻最大的特征。
保持低階主成分,而忽略高階成分,低階成分往往能保留數據的最重要部分。
實例from sklearn.feature_selection import VarianceThreshold# 特征選擇 VarianceThreshold刪除低方差的特征(刪除差別不大的特征)var = VarianceThreshold(threshold=1.0) # 將方差小于等于1.0的特征刪除。 默認threshold=0.0data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]) print(data)’’’[[0] [4] [1]]’’’
內容擴展:
python實現拉普拉斯降維
def laplaEigen(dataMat,k,t): m,n=shape(dataMat) W=mat(zeros([m,m])) D=mat(zeros([m,m])) for i in range(m): k_index=knn(dataMat[i,:],dataMat,k) for j in range(k): sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] sqDiffVector=array(sqDiffVector)**2 sqDistances = sqDiffVector.sum() W[i,k_index[j]]=math.exp(-sqDistances/t) D[i,i]+=W[i,k_index[j]] L=D-W Dinv=np.linalg.inv(D) X=np.dot(D.I,L) lamda,f=np.linalg.eig(X) return lamda,f def knn(inX, dataSet, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = array(diffMat)**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() return sortedDistIndicies[0:k] dataMat, color = make_swiss_roll(n_samples=2000) lamda,f=laplaEigen(dataMat,11,5.0) fm,fn =shape(f) print ’fm,fn:’,fm,fn lamdaIndicies = argsort(lamda) first=0 second=0 print lamdaIndicies[0], lamdaIndicies[1] for i in range(fm): if lamda[lamdaIndicies[i]].real>1e-5: print lamda[lamdaIndicies[i]] first=lamdaIndicies[i] second=lamdaIndicies[i+1] break print first, second redEigVects = f[:,lamdaIndicies] fig=plt.figure(’origin’) ax1 = fig.add_subplot(111, projection=’3d’) ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) fig=plt.figure(’lowdata’) ax2 = fig.add_subplot(111) ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) plt.show()
到此這篇關于Python特征降維知識點總結的文章就介紹到這了,更多相關Python特征降維如何理解內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!
相關文章:
