久久福利_99r_国产日韩在线视频_直接看av的网站_中文欧美日韩_久久一

您的位置:首頁技術(shù)文章
文章詳情頁

RFC2415 - Simulation Studies of Increased Initial TCP Window Size

瀏覽:16日期:2024-02-18 08:28:58
Network Working Group K. PoduriRequest for Comments: 2415 K. NicholsCategory: Informational Bay Networks September 1998 Simulation Studies of Increased Initial TCP Window SizeStatus of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved.Abstract An increase in the permissible initial window size of a TCP connection, from one segment to three or four segments, has been under discussion in the tcp-impl working group. This document covers some simulation studies of the effects of increasing the initial window size of TCP. Both long-lived TCP connections (file transfers) and short-lived web-browsing style connections were modeled. The simulations were performed using the publicly available ns-2 simulator and our custom models and files are also available.1. IntrodUCtion We present results from a set of simulations with increased TCP initial window (IW). The main objectives were to eXPlore the conditions under which the larger IW was a 'win' and to determine the effects, if any, the larger IW might have on other traffic flows using an IW of one segment. This study was inspired by discussions at the Munich IETF tcp-impl and tcp-sat meetings. A proposal to increase the IW size to about 4K bytes (4380 bytes in the case of 1460 byte segments) was discussed. Concerns about both the utility of the increase and its effect on other traffic were raised. Some studies were presented showing the positive effects of increased IW on individual connections, but no studies were shown with a wide variety of simultaneous traffic flows. It appeared that some of the questions being raised could be addressed in an ns-2 simulation. Early results from our simulations were previously posted to the tcp-impl mailing list and presented at the tcp-impl WG meeting at the December 1997 IETF.2. Model and Assumptions We simulated a network topology with a bottleneck link as shown: 10Mb, 10Mb, (all 4 links) (all 4 links) C n2_________ ______ n6 S l n3_________ /______ n7 e i 1.5Mb, 50ms // r e n0 ------------------------ n1 v n n4__________// _____ n8 e t n5__________/ ______ n9 r s s URLs --> <--- FTP & Web data File downloading and web-browsing clients are attached to the nodes (n2-n5) on the left-hand side. These clients are served by the FTP and Web servers attached to the nodes (n6-n9) on the right-hand side. The links to and from those nodes are at 10 Mbps. The bottleneck link is between n1 and n0. All links are bi-directional, but only ACKs, SYNs, FINs, and URLs are flowing from left to right. Some simulations were also performed with data traffic flowing from right to left simultaneously, but it had no effect on the results. In the simulations we assumed that all ftps transferred 1-MB files and that all web pages had exactly three embedded URLs. The web clients are browsing quite aggressively, requesting a new page after a random delay uniformly distributed between 1 and 5 seconds. This is not meant to realistically model a single user's web-browsing pattern, but to create a reasonably heavy traffic load whose individual tcp connections accurately reflect real web traffic. Some discussion of these models as used in earlier studies is available in references [3] and [4]. The maximum tcp window was set to 11 packets, maximum packet (or segment) size to 1460 bytes, and buffer sizes were set at 25 packets. (The ns-2 TCPs require setting window sizes and buffer sizes in number of packets. In our tcp-full code some of the internal parameters have been set to be byte-oriented, but external values must still be set in number of packets.) In our simulations, we varied the number of data segments sent into a new TCP connection (or initial window) from one to four, keeping all segments at 1460 bytes. A dropped packet causes a restart window of one segment to be used, just as in current practice. For ns-2 users: The tcp-full code was modified to use an 'application' class and three application client-server pairs were written: a simple file transfer (ftp), a model of http1.0 style web connection and a very rough model of http1.1 style web connection. The required files and scripts for these simulations are available under the contributed code section on the ns-simulator web page at the sites ftp://ftp.ee.lbl.gov/IW.{tar, tar.Z} or http://www- nrg.ee.lbl.gov/floyd/tcp_init_win.Html. Simulations were run with 8, 16, 32 web clients and a number of ftp clients ranging from 0 to 3. The IW was varied from 1 to 4, though the 4-packet case lies beyond what is currently recommended. The figures of merit used were goodput, the median page delay seen by the web clients and the median file transfer delay seen by the ftp clients. The simulated run time was rather large, 360 seconds, to ensure an adequate sample. (Median values remained the same for simulations with larger run times and can be considered stable)3. Results In our simulations, we varied the number of file transfer clients in order to change the congestion of the link. Recall that our ftp clients continuously request 1 Mbyte transfers, so the link utilization is over 90% when even a single ftp client is present. When three file transfer clients are running simultaneously, the resultant congestion is somewhat pathological, making the values recorded stable. Though all connections use the same initial window, the effect of increasing the IW on a 1 Mbyte file transfer is not detectable, thus we focus on the web browsing connections. (In the tables, we use 'webs' to indicate number of web clients and 'ftps' to indicate the number of file transfer clients attached.) Table 1 shows the median delays experienced by the web transfers with an increase in the TCP IW. There is clearly an improvement in transfer delays for the web connections with increase in the IW, in many cases on the order of 30%. The steepness of the performance improvement going from an IW of 1 to an IW of 2 is mainly due to the distribution of files fetched by each URL (see references [1] and [2]); the median size of both primary and in-line URLs fits completely into two packets. If file distributions change, the shape of this curve may also change. Table 1. Median web page delay #Webs #FTPs IW=1 IW=2 IW=3 IW=4 (s) (% decrease) ---------------------------------------------- 8 0 0.56 14.3 17.9 16.1 8 1 1.06 18.9 25.5 32.1 8 2 1.18 16.1 17.1 28.9 8 3 1.26 11.9 19.0 27.0 16 0 0.64 11.0 15.6 18.8 16 1 1.04 17.3 24.0 35.6 16 2 1.22 17.2 20.5 25.4 16 3 1.31 10.7 21.4 22.1 32 0 0.92 17.6 28.6 21.0 32 1 1.19 19.6 25.0 26.1 32 2 1.43 23.8 35.0 33.6 32 3 1.56 19.2 29.5 33.3 Table 2 shows the bottleneck link utilization and packet drop percentage of the same experiment. Packet drop rates did increase with IW, but in all cases except that of the single most pathological overload, the increase in drop percentage was less than 1%. A decrease in packet drop percentage is observed in some overloaded situations, specifically when ftp transfers consumed most of the link bandwidth and a large number of web transfers shared the remaining bandwidth of the link. In this case, the web transfers experience severe packet loss and some of the IW=4 web clients suffer multiple packet losses from the same window, resulting in longer recovery times than when there is a single packet loss in a window. During the recovery time, the connections are inactive which alleviates congestion and thus results in a decrease in the packet drop percentage. It should be noted that such observations were made only in extremely overloaded scenarios.Table 2. Link utilization and packet drop rates Percentage Link Utilization Packet drop rate#Webs #FTPs IW=1 IW=2 IW=3 IW=4 IW=1 IW=2 IW=3 IW=4----------------------------------------------------------------------- 8 0 34 37 38 39 0.0 0.0 0.0 0.0 8 1 95 92 93 92 0.6 1.2 1.4 1.3 8 2 98 97 97 96 1.8 2.3 2.3 2.7 8 3 98 98 98 98 2.6 3.0 3.5 3.5----------------------------------------------------------------------- 16 0 67 69 69 67 0.1 0.5 0.8 1.0 16 1 96 95 93 92 2.1 2.6 2.9 2.9 16 2 98 98 97 96 3.5 3.6 4.2 4.5 16 3 99 99 98 98 4.5 4.7 5.2 4.9----------------------------------------------------------------------- 32 0 92 87 85 84 0.1 0.5 0.8 1.0 32 1 98 97 96 96 2.1 2.6 2.9 2.9 32 2 99 99 98 98 3.5 3.6 4.2 4.5 32 3 100 99 99 98 9.3 8.4 7.7 7.6 To get a more complete picture of performance, we computed the network power, goodput divided by median delay (in Mbytes/ms), and plotted it against IW for all scenarios. (Each scenario is uniquely identified by its number of webs and number of file transfers.) We plot these values in Figure 1 (in the pdf version), illustrating a general advantage to increasing IW. When a large number of web clients is combined with ftps, particularly multiple ftps, pathological cases result from the extreme congestion. In these cases, there appears to be no particular trend to the results of increasing the IW, in fact simulation results are not particularly stable. To get a clearer picture of what is happening across all the tested scenarios, we normalized the network power values for the non- pathological scenario by the network power for that scenario at IW of one. These results are plotted in Figure 2. As IW is increased from one to four, network power increased by at least 15%, even in a congested scenario dominated by bulk transfer traffic. In simulations where web traffic has a dominant share of the available bandwidth, the increase in network power was up to 60%. The increase in network power at higher initial window sizes is due to an increase in throughput and a decrease in the delay. Since the (slightly) increased drop rates were accompanied by better performance, drop rate is clearly not an indicator of user level performance. The gains in performance seen by the web clients need to be balanced against the performance the file transfers are seeing. We computed ftp network power and show this in Table 3. It appears that the improvement in network power seen by the web connections has negligible effect on the concurrent file transfers. It can be observed from the table that there is a small variation in the network power of file transfers with an increase in the size of IW but no particular trend can be seen. It can be concluded that the network power of file transfers essentially remained the same. However, it should be noted that a larger IW does allow web transfers to gain slightly more bandwidth than with a smaller IW. This could mean fewer bytes transferred for FTP applications or a slight decrease in network power as computed by us. Table 3. Network power of file transfers with an increase in the TCP IW size #Webs #FTPs IW=1 IW=2 IW=3 IW=4 -------------------------------------------- 8 1 4.7 4.2 4.2 4.2 8 2 3.0 2.8 3.0 2.8 8 3 2.2 2.2 2.2 2.2 16 1 2.3 2.4 2.4 2.5 16 2 1.8 2.0 1.8 1.9 16 3 1.4 1.6 1.5 1.7 32 1 0.7 0.9 1.3 0.9 32 2 0.8 1.0 1.3 1.1 32 3 0.7 1.0 1.2 1.0 The above simulations all used http1.0 style web connections, thus, a natural question is to ask how results are affected by migration to http1.1. A rough model of this behavior was simulated by using one connection to send all of the information from both the primary URL and the three embedded, or in-line, URLs. Since the transfer size is now made up of four web files, the steep improvement in performance between an IW of 1 and an IW of two, noted in the previous results, has been smoothed. Results are shown in Tables 4 & 5 and Figs. 3 & 4. Occasionally an increase in IW from 3 to 4 decreases the network power owing to a non-increase or a slight decrease in the throughput. TCP connections opening up with a higher window size into a very congested network might experience some packet drops and consequently a slight decrease in the throughput. This indicates that increase of the initial window sizes to further higher values (>4) may not always result in a favorable network performance. This can be seen clearly in Figure 4 where the network power shows a decrease for the two highly congested cases. Table 4. Median web page delay for http1.1 #Webs #FTPs IW=1 IW=2 IW=3 IW=4 (s) (% decrease) ---------------------------------------------- 8 0 0.47 14.9 19.1 21.3 8 1 0.84 17.9 19.0 25.0 8 2 0.99 11.5 17.3 23.0 8 3 1.04 12.1 20.2 28.3 16 0 0.54 07.4 14.8 20.4 16 1 0.89 14.6 21.3 27.0 16 2 1.02 14.7 19.6 25.5 16 3 1.11 09.0 17.0 18.9 32 0 0.94 16.0 29.8 36.2 32 1 1.23 12.2 28.5 21.1 32 2 1.39 06.5 13.7 12.2 32 3 1.46 04.0 11.0 15.0 Table 5. Network power of file transfers with an increase in the TCP IW size #Webs #FTPs IW=1 IW=2 IW=3 IW=4 -------------------------------------------- 8 1 4.2 4.2 4.2 3.7 8 2 2.7 2.5 2.6 2.3 8 3 2.1 1.9 2.0 2.0 16 1 1.8 1.8 1.5 1.4 16 2 1.5 1.2 1.1 1.5 16 3 1.0 1.0 1.0 1.0 32 1 0.3 0.3 0.5 0.3 32 2 0.4 0.3 0.4 0.4 32 3 0.4 0.3 0.4 0.5 For further insight, we returned to the http1.0 model and mixed some web-browsing connections with IWs of one with those using IWs of three. In this experiment, we first simulated a total of 16 web- browsing connections, all using IW of one. Then the clients were split into two groups of 8 each, one of which uses IW=1 and the other used IW=3. We repeated the simulations for a total of 32 and 64 web-browsing clients, splitting those into groups of 16 and 32 respectively. Table 6 shows these results. We report the goodput (in Mbytes), the web page delays (in milli seconds), the percent utilization of the link and the percent of packets dropped.Table 6. Results for half-and-half scenarioMedian Page Delays and Goodput (MB) Link Utilization (%) & Drops (%)#Webs IW=1 IW=3 IW=1 IW=3 G.put dly G.put dly L.util Drops L.util Drops-------------------------------------------------------------------16 35.5 0.64 36.4 0.54 67 0.1 69 0.78/8 16.9 0.67 18.9 0.52 68 0.5 -------------------------------------------------------------------32 48.9 0.91 44.7 0.68 92 3.5 85 4.316/16 22.8 0.94 22.9 0.71 89 4.6 --------------------------------------------------------------------64 51.9 1.50 47.6 0.86 98 13.0 91 8.632/32 29.0 1.40 22.0 1.20 98 12.0 Unsurprisingly, the non-split experiments are consistent with our earlier results, clients with IW=3 outperform clients with IW=1. The results of running the 8/8 and 16/16 splits show that running a mixture of IW=3 and IW=1 has no negative effect on the IW=1 conversations, while IW=3 conversations maintain their performance. However, the 32/32 split shows that web-browsing connections with IW=3 are adversely affected. We believe this is due to the pathological dynamics of this extremely congested scenario. Since embedded URLs open their connections simultaneously, very large number of TCP connections are arriving at the bottleneck link resulting in multiple packet losses for the IW=3 conversations. The myriad problems of this simultaneous opening strategy is, of course, part of the motivation for the development of http1.1.4. Discussion The indications from these results are that increasing the initial window size to 3 packets (or 4380 bytes) helps to improve perceived performance. Many further variations on these simulation scenarios are possible and we've made our simulation models and scripts available in order to facilitate others' experiments. We also used the RED queue management included with ns-2 to perform some other simulation studies. We have not reported on those results here since we don't consider the studies complete. We found that by adding RED to the bottleneck link, we achieved similar performance gains (with an IW of 1) to those we found with increased IWs without RED. Others may wish to investigate this further. Although the simulation sets were run for a T1 link, several scenarios with varying levels of congestion and varying number of web and ftp clients were analyzed. It is reasonable to expect that the results would scale for links with higher bandwidth. However, interested readers could investigate this ASPect further. We also used the RED queue management included with ns-2 to perform some other simulation studies. We have not reported on those results here since we don't consider the studies complete. We found that by adding RED to the bottleneck link, we achieved similar performance gains (with an IW of 1) to those we found with increased IWs without RED. Others may wish to investigate this further.5. References [1] B. Mah, 'An Empirical Model of HTTP Network Traffic', Proceedings of INFOCOM '97, Kobe, Japan, April 7-11, 1997. [2] C.R. Cunha, A. Bestavros, M.E. Crovella, 'Characteristics of WWW Client-based Traces', Boston University Computer Science Technical Report BU-CS-95-010, July 18, 1995. [3] K.M. Nichols and M. Laubach, 'Tiers of Service for Data Access in a HFC Architecture', Proceedings of SCTE Convergence Conference, January, 1997. [4] K.M. Nichols, 'Improving Network Simulation with Feedback', available from knichols@baynetworks.com6. Acknowledgements This work benefited from discussions with and comments from Van Jacobson.7. Security Considerations This document discusses a simulation study of the effects of a proposed change to TCP. Consequently, there are no security considerations directly related to the document. There are also no known security considerations associated with the proposed change.8. Authors' Addresses Kedarnath Poduri Bay Networks 4401 Great America Parkway SC01-04 Santa Clara, CA 95052-8185 Phone: +1-408-495-2463 Fax: +1-408-495-1299 EMail: kpoduri@Baynetworks.com Kathleen Nichols Bay Networks 4401 Great America Parkway SC01-04 Santa Clara, CA 95052-8185 EMail: knichols@baynetworks.comFull Copyright Statement Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an 'AS IS' basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
相關(guān)文章:
主站蜘蛛池模板: 国产一级视频在线观看 | 成人a视频在线观看 | 欧美日韩一二区 | 欧美精品一区自拍a毛片在线视频 | 亚洲精品a | 精品久久久久香蕉网 | 久久精品网| 欧美日韩三区 | 精品视频一区二区在线 | 欲色av | 可以看的毛片网站 | 啪啪网站免费 | 成人av免费观看 | 在线激情视频 | 国产乱码一区二区三区 | 中文字幕在线免费视频 | 欧美a级成人淫片免费看 | 在线一区观看 | 国产一区二区三区久久久 | 亚洲免费视频大全 | 欧美中文在线观看 | 中文字幕久久综合 | 久久久久久久免费 | 欧美精品一区二区三区在线 | 久久精品亚洲精品 | 久草免费福利 | chinese中国真实乱对白 | 久久国产精品久久久久久 | 久草精品视频 | 久久久国产精品 | 日韩成人一级片 | 国产精品夜夜春夜夜爽久久电影 | 久久精品亚洲 | 亚州综合一区 | 精品久久久久久久久久久久久久 | 免费在线观看毛片网站 | 国产乱码久久久久久一区二区 | 久久久av | 精品欧美一区二区三区久久久小说 | 在线播放一区二区三区 | 在线精品亚洲欧美日韩国产 | 午夜视频在线播放 | 亚洲a在线播放 | 876av国产精品电影 | 欧美成人精品在线视频 | 日韩h视频 | 精品少妇一区二区三区在线播放 | 亚洲精品91| 国产毛片在线 | 成人午夜电影在线 | 日本a视频| 在线高清av| 91免费在线视频 | 国产一区二区在线观看视频 | 国产成人精品在线 | 国产无毛 | 免费视频爱爱太爽了 | 91麻豆精品国产91久久久更新资源速度超快 | 精品少妇一区二区三区在线播放 | 亚洲精品日本 | 狠狠狠狠狠狠干 | 在线精品一区二区 | 精品久久久蜜桃 | 天天舔日日干 | 亚洲美女在线视频 | 午夜视频网站 | 涩涩视频网站在线观看 | 欧美精品一区二区三区蜜桃视频 | 亚洲国产精品久久久久久 | 婷婷久久综合 | 欧美九九九 | 亚洲久草 | www.国产精品| 欧美亚洲一区 | 国产精品国产精品国产专区不卡 | 亚洲精品久久久久久久久久久久久 | 国产欧美精品区一区二区三区 | 国产福利精品一区 | 久久久久中文字幕 | 免费观看特级毛片 | 久久99久久久久 | 欧美精品成人一区二区在线 | 欧美日韩一区二区中文字幕 | 一区二区三区四区在线 | 爱爱视频网站 | 伊人久久国产 | 国产一级中文字幕 | 国产美女精品 | 婷婷亚洲五月 | 夜夜视频 | 91视频大全| 亚洲午夜一区 | 午夜免费 | 一区二区在线免费观看 | 国产一区二区精品在线 | 成人妇女免费播放久久久 | 亚洲国产精品99久久久久久久久 | 91免费视频在线 | 中文字幕精品一区 | 天天碰天天操 | 欧美高清hd | 国产亚洲精品久久久久久豆腐 | 亚洲一区二区三区高清 | 尹人成人| 四虎免看黄| 特一级毛片| 成av人在线 | 国产精品久久久久久吹潮 | 国产真实乱全部视频 | 久久综合狠狠综合久久综合88 | 国产精品成人一区二区 | 久久国产视频一区二区 | 曰曰操| 国产高清免费视频 | 91精品久久久久久久久 | 亚洲成人精品一区二区三区 | 91亚洲国产成人久久精品网站 | 日韩国产欧美一区 | www免费网站在线观看 | 亚洲精品视频在线观看免费视频 | 亚洲精品在线成人 | 亚洲自拍偷拍欧美 | 一区二区在线不卡 | 日韩中文字幕在线播放 | 久久夜视频 | 男女视频免费在线观看 | 欧美精品一区在线观看 | 一区二区三区高清 | 久久亚洲一区 | 日本中文在线 | www.99热这里只有精品 | 成人免费一区二区三区视频网站 | 国产在线精品一区二区 | www.亚洲 | 天天天操 | 99久久99| 91精品久久久久久久久久 | 99国产精品99久久久久久 | 欧美日韩视频第一页 | 国产激情久久久久久 | 久在线观看 | 亚洲一区中文字幕 | 97超碰人人 | www亚洲精品| 欧美一级免费观看 | 欧美美女爱爱视频 | 欧美日韩免费看 | 成人午夜精品一区二区三区 | 欧美精品一区二区三区视频 | 国产免费一区二区三区网站免费 | 久在线视频| 欧美在线视频一区 | 91免费国产 | 亚洲aⅴ天堂av在线电影软件 | 国产精品久久嫩一区二区 免费 | 二区在线观看 | 国产欧美日韩精品一区二区三区 | 国产在线视频一区二区 | 2021最新热播中文字幕-第1页-看片视频 青青青久草 | 日韩欧美一区二区三区免费观看 | 一级黄色生活视频 | 国产一区二区三区在线免费观看 | 国产www在线 | 国产精品国产三级国产aⅴ无密码 | 中文字幕在线综合 | 亚洲 欧美 日韩 丝袜 另类 | 成人一区二区三区在线 | 亚洲成人久久久 | 午夜精品一区二区三区在线播放 | 日韩欧美国产一区二区 | 欧美日韩在线一区二区 | 男女视频免费 | 精品中文字幕一区二区 | 久久久精品免费视频 | 国产日韩av在线 | 一级毛片免费高清 | 国产成人一区二区三区影院在线 | 在线观看亚洲一区二区 | 午夜你懂得 | 在线视频 中文字幕 | 国产一区二区免费 | 精品国产一区二区在线 | 成人亚洲一区 | 中文字幕一区在线观看视频 | 日韩激情二区 | 久久99精品久久久久久久青青日本 | 免费一二二区视频 | 999精品在线 | 国产精品久久久久久久午夜 | 中文字幕亚洲欧美日韩在线不卡 | 韩国精品一区二区 | 久久se精品一区精品二区 | 久久一区二区三区四区 | 一区二区三区国产 | 99视频精品 | 久久人人av| jizzjizzjizz亚洲女 | 青草青草久热精品视频在线观看 | 欧美精品一区二区三区在线 | 欧美日韩电影一区二区 | 亚洲精品乱码久久久久久花季 | 欧美日韩中文国产一区发布 | 欧美一级做性受免费大片免费 | 国产精品久久久久久中文字 | 国产99久久久精品视频 | 日日日操| 欧美激情视频一区二区三区 | 欧美日韩在线免费观看 | 国产精品美女久久久久久免费 | 艹逼网 | 久久久久久国产精品高清 | 中文字幕一二区 | 国产精品自产拍在线观看桃花 | 欧美日韩中字 | 亚洲精品在 | 色综合久久久久 | 91看片网 | 午夜影院a | 一区二区三区四区日韩 | 国产日韩欧美精品一区二区三区 | www97影院| 日本日韩中文字幕 | 日日精品 | 伊人最新网址 | 日韩在线欧美 | 久久免费在线观看 | 日韩中文字幕在线观看 | 亚洲国产婷婷香蕉久久久久久99 | 久久av网址 | 97成人精品视频在线观看 | 91视频在线免费观看 | 91成人在线| 久久久99精品免费观看 | 国产精品色在线网站 | 亚洲国产一区二区在线 | 一区久久| 91在线视频观看 | 日韩不卡 | 久久久tv| 欧美日韩国产一区二区三区 | 做a视频在线观看 | 国产一级免费 | 久久一 | 天天操免费 | 国产精品久久久久久福利一牛影视 | 日韩精品一区在线视频 | 精品九九| 精品久久精品 | 久久午夜影院 | 国产不卡视频在线观看 | 欧美在线视频一区二区 | 日韩一区二区福利视频 | 黄色片在线 | 一区在线视频 | 成人做爰69片免费 | 久久婷婷国产麻豆91天堂 | 欧美一区二区三区在线观看视频 | 久久久久久成人 | 精品一区二区三区久久 | 欧美精品一区二区三区在线四季 | 久久高清 | 国产精品视频成人 | 精品av| 午夜伦理影院 | 欧美视频xxx| 欧美一区二区三区在线观看视频 | 亚洲a网 | 色橹橹欧美在线观看视频高清 | 中文字幕一区在线观看视频 | 国产精品久久久麻豆 | a级片网站| 国产精品一区二区三区在线 | 国产成人av在线播放 | 中文字幕综合 | 最新中文字幕 | 国产精品一区二区三区四区 | 国产亚洲一区二区精品 | 亚洲精品视频免费看 | 日韩视频精品在线观看 | 97精品超碰一区二区三区 | 亚洲人人| 国产成人精品亚洲777人妖 | 久久久精品 | 国产精品久久一区 | 欧美韩一区二区 | 成年人在线观看 | 在线观看中文字幕 | 中文字幕日韩久久 | 夜夜骚 | 国产精品无码久久久久 | 亚洲综合二区 | 亚洲福利av| 国产精品久久久久久久免费大片 | 国产欧美一区二区 | 欧美午夜在线 | 欧美日韩精品一区二区三区蜜桃 | 亚洲免费在线观看 | 不卡一区二区三区四区 | 99国产精品久久久 | 欧美一级精品 | 亚洲精品一二三区 | 午夜激情福利视频 | 中文字幕第33页 | 亚洲精品国产高清 | 亚洲成人日韩 | 精品亚洲视频在线观看 | 精品免费视频 | 蜜臀av在线播放一区二区三区 | 综合av第一页 | 色综合二区 | 嫩草视频免费在线观看 | 免费v片 | 亚洲一区二区三区久久久 | 成年入口无限观看网站 | 欧美电影一区 | 久久色av | 欧美日韩免费一区二区三区 | 91在线视频观看 | 天天精品视频免费观看 | 在线国产一区二区 | 亚洲免费网站 | 国外成人在线视频网站 | www.av在线| 国产亚洲欧美在线 | 日韩精品久久 | 激情久久av一区av二区av三区 | 7777久久| 久久精品小视频 | 中文字幕免费中文 | 免费成人在线网站 | 亚洲免费人成在线视频观看 | 欧美黄视频在线观看 | 三区在线| 精品久久久久久亚洲综合网 | 日本视频中文字幕 | 亚洲国产成人精品女人久久久 | 欧美在线视频播放 | 日韩在线观看视频一区二区三区 | 中文字幕一区二区三区不卡 | 日韩有码在线播放 | 亚洲视频1区 | 99色在线视频 | 国产精品美女视频免费观看软件 | 欧美精品一区二区在线观看 | 黄色成人影视 | 亚洲在线 | 国产精品亚洲精品 | 亚洲精品一区二区三区在线 | 国产精品第一区第27页 | 久久中文视频 | 国产精品中文字幕在线播放 | 中文字字幕在线 | 久久精品在线 | 欧美香蕉| 国产传媒毛片精品视频第一次 | 国产99热 | 久久久久久91香蕉国产 | 91精品国产乱码久久久久久久久 | 欧美大片在线看免费观看 | 亚洲国产成人在线 | 福利网址| 欧洲一区二区在线观看 | 91在线视频免费观看 | 国产一区二区在线电影 | 亚洲精品视频在线观看网站 | 日韩快播电影 | 男女av在线 | 日韩一本| 国产成人一区 | 日韩色图在线观看 | 激情综合久久 | 一区二区三区四区 | 日本一区二区高清不卡 | 亚洲精品一区二区三区蜜桃久 | 国产精品一区欧美 | 国产一区二区精品丝袜 | 麻豆国产露脸在线观看 | 麻豆精品国产传媒 | 成人一区二区三区四区 | 国产精品一区二 | 国产成人 综合 亚洲 | 高清国产视频 | 国产精品一区二区av | 久久久久久久中文 | hitomi一区二区三区精品 | 久久99这里只有精品 | 91免费版在线观看 | 日韩精品免费观看 | 国产美女久久 | 亚洲一区二区日韩 | 日韩欧美综合 | 欧美三级影院 | 黄久久久 | 中文字幕1区 | 亚洲午夜视频在线观看 | 日韩免费在线观看视频 | 国产激情精品一区二区三区 | 久久久999成人 | 99视频精品| 91免费看| 午夜久久久 | 91亚洲精品一区 | 国产精品1区2区在线观看 | a级毛片基地| 日日干夜夜干 | 欧美一区二区在线视频 | 欧美1区| 看欧美黄色录像 | 丁香婷婷在线 | 免费xxxxx在线观看网站软件 | 亚洲不卡在线观看 | 国产一区二区免费电影 | 亚洲一区二区中文字幕在线观看 | 国产精品无码久久久久 | 久久九 | 亚洲免费网| 亚洲综合色自拍一区 | 午夜国产精品视频 | 欧美wwwsss9999| 国产免费av在线 | 中国特黄毛片 | 国产一区在线观看视频 | 国产日韩精品视频 | 精品一区二区av | 在线成人亚洲 | 欧美视频在线一区 | 成人在线精品 | 特黄视频| 欧美日韩干 | 日日爱886| 草草网站| 久久三区 | 成人免费视频观看视频 | av中文字幕在线播放 | 在线精品亚洲欧美日韩国产 | 一级毛片免费视频 | 91成人免费在线视频 | 黄色一级免费电影 | 极品久久久久久 | 视频1区2区| 色吊丝在线| 91在线一区二区 | 日韩在线免费观看网站 | 国产精品一区三区 | 丁香久久 | 99爱在线观看 | 一区二区三区在线免费观看 | 99精品久久久 | 亚洲精品乱码久久久久久蜜桃图片 | 国产在线观看 | 欧美一区二区三区男人的天堂 | 一级全黄性色生活片 | 久久精品久久久 | 亚洲欧美视频一区 | 国产在线一区二区三区 | 日本污视频在线观看 | 中文字幕在线观看av | 天天色天天射天天操 | 国产网站在线 | 二区免费视频 | 2020国产在线 | av在线免费观看一区二区 | 国产午夜精品久久久 | 精品国产一区二区三区性色av | 成人一区二区在线观看 | 91尤物网站网红尤物福利 | 久久久久久国产精品久久 | 欧美中文字幕 | 天天曰天天曰 | 男人的天堂视频网站 | 一区二区三区视频在线观看 | 婷婷毛片 | 国产第一页在线播放 | 中文av字幕 | 一级毛片免费视频 | 久久精品一区二区三区四区 | 久久精品亚洲一区二区 | 久久99精品久久久久久久青青日本 | 久草视 | 日本成人在线看 | 中文字幕 国产精品 | 免费午夜电影 | 精品视频久久久久 | av在线一区二区三区 | 午夜一级片 | 国产福利精品一区 | 九九亚洲 | 国产黄色免费网站 | 天天看天天摸天天操 | 精品自拍视频 | 国产精品久久久久久久久久 | 日韩三级电影在线免费观看 | 成人av高清 | 欧美一级免费 | 韩国三级午夜理伦三级三 | 精品国产不卡一区二区三区 | 欧美一区二区在线观看 | 欧美久久不卡 | 精品中文在线 | 超碰高清| 亚洲免费视频网站 | 午夜剧 | 久久久性色精品国产免费观看 | 精品www | 国产精品久久久久久久久久久新郎 | 久草电影网 | 成人在线观 | 国产精品久久 | 久久久久久久久久国产 | jlzzjlzz国产精品久久 | 五月天婷婷免费视频 | 亚洲成人综合网站 | 久久精品国产99国产 | 91在线精品一区二区 | 午夜欧美 | 国产成人精品免费视频大全最热 | 黄在线看v | 亚洲精品久久久久久一区二区 | 国产黄色大片免费观看 | 久久精品无码一区二区日韩av | 国产精品久久久久久久毛片 | 国产 欧美 日韩 一区 | 亚洲一级毛片 | 免费亚洲网站 | 亚洲激情精品 | 亚洲骚片 | 在线欧美色 | 日韩成人在线电影 | 伊人网综合视频 | 久久精品一区二区三区四区 | 亚洲成人免费网址 | 韩日在线观看视频 | 日韩成人在线播放 | 日本一区二区三区免费观看 | 一级免费av | 国产成人综合视频 | 免费二区 | 国产精品一码二码三码在线 | 欧美一区二区免费 | 久久aⅴ国产欧美74aaa | 亚洲一区二区三区在线 | 亚洲一区二区免费视频 | 在线精品国产一区二区三区 | 日韩综合在线 | 久久免费视频在线 | 成人欧美一区二区三区黑人孕妇 | 中文乱码一区 | 毛片综合 | 久在线| 97国产超碰 | 国产精品一区三区 | 在线观看日韩 | 日韩欧美在线视频 | 男人天堂中文字幕 | 婷婷精品视频 | 久久国产精品视频 | 亚洲视频在线看 | 久久精品中文字幕 | 一本大道久久a久久精二百 国产精品片aa在线观看 | 欧美成人免费一级人片100 | 91电影院 | 久久密| 国产日韩视频在线观看 | 免费成人在线观看视频 | 亚洲 欧美 日韩 丝袜 另类 | 久久久久久成人 | 欧美视频一区二区三区在线观看 | 婷婷丁香六月天 | 欧美亚洲性视频 | 成年人精品视频在线观看 | 中文精品一区二区三区 | 国产99久久精品一区二区永久免费 | 免费成人在线网站 | www久久精品 | 99爱在线观看 | 国产一区二区三区网站 | 久久精品视频一区 | 日本一区二区三区四区 | 日韩欧美视频一区二区三区 | 免费在线看a | www.fefe66.com| 中文在线播放 | 日本激情视频一区二区三区 | 欧美精品久久久 | 免费午夜电影 | 永久免费精品视频 | 中文字幕亚洲一区二区三区 | 日日操夜 | 欧美日韩在线成人 | 毛片网| 精品日韩一区 | 99精品久久久 | 一区二区三区在线播放 | 精品国产乱码久久久久久1区2区 | 精品一区二区三区四区五区 | 国产精品中文字幕在线 | 2024天天干 | 欧美成年黄网站色视频 | 久久久香蕉 | 免费观看特级毛片 | 国产 一区 | 一区二区在线视频免费观看 | 国产区视频在线观看 | 日韩在线成人 | av一区二区在线观看 | 久久成人精品 | 欧美精品色 | 免费观看成人毛片 | 欧美日韩午夜 | 亚洲精品成人 | 国产成人在线电影 | 国产特级毛片 | 亚洲国产精品成人 | www伊人 | 久久国产精品99久久久久久老狼 |