久久福利_99r_国产日韩在线视频_直接看av的网站_中文欧美日韩_久久一

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

Python實(shí)現(xiàn)EM算法實(shí)例代碼

瀏覽:18日期:2022-07-09 10:18:06

EM算法實(shí)例

通過實(shí)例可以快速了解EM算法的基本思想,具體推導(dǎo)請(qǐng)點(diǎn)文末鏈接。圖a是讓我們預(yù)熱的,圖b是EM算法的實(shí)例。

這是一個(gè)拋硬幣的例子,H表示正面向上,T表示反面向上,參數(shù)θ表示正面朝上的概率。硬幣有兩個(gè),A和B,硬幣是有偏的。本次實(shí)驗(yàn)總共做了5組,每組隨機(jī)選一個(gè)硬幣,連續(xù)拋10次。如果知道每次拋的是哪個(gè)硬幣,那么計(jì)算參數(shù)θ就非常簡(jiǎn)單了,如

下圖所示:

Python實(shí)現(xiàn)EM算法實(shí)例代碼

如果不知道每次拋的是哪個(gè)硬幣呢?那么,我們就需要用EM算法,基本步驟為:

  1、給θ_AθA​和θ_BθB​一個(gè)初始值;

  2、(E-step)估計(jì)每組實(shí)驗(yàn)是硬幣A的概率(本組實(shí)驗(yàn)是硬幣B的概率=1-本組實(shí)驗(yàn)是硬幣A的概率)。分別計(jì)算每組實(shí)驗(yàn)中,選擇A硬幣且正面朝上次數(shù)的期望值,選擇B硬幣且正面朝上次數(shù)的期望值;

  3、(M-step)利用第三步求得的期望值重新計(jì)算θ_AθA​和θ_BθB​;

  4、當(dāng)?shù)揭欢ù螖?shù),或者算法收斂到一定精度,結(jié)束算法,否則,回到第2步。

Python實(shí)現(xiàn)EM算法實(shí)例代碼

計(jì)算過程詳解:初始值θ_A^{(0)}θA(0)​=0.6,θ_B^{(0)}θB(0)​=0.5。

由兩個(gè)硬幣的初始值0.6和0.5,容易得出投擲出5正5反的概率是p_A=C^5_{10}*(0.6^5)*(0.4^5)pA​=C105​∗(0.65)∗(0.45),p_B=C_{10}^5*(0.5^5)*(0.5^5)pB​=C105​∗(0.55)∗(0.55), p_ApA​/(p_ApA​+p_BpB​)=0.449, 0.45就是0.449近似而來的,表示第一組實(shí)驗(yàn)選擇的硬幣是A的概率為0.45。然后,0.449 * 5H = 2.2H ,0.449 * 5T = 2.2T ,表示第一組實(shí)驗(yàn)選擇A硬幣且正面朝上次數(shù)和反面朝上次數(shù)的期望值都是2.2,其他的值依次類推。最后,求出θ_A^{(1)}θA(1)​=0.71,θ_B^{(1)}θB(1)​=0.58。重復(fù)上述過程,不斷迭代,直到算法收斂到一定精度為止。

這篇博客對(duì)EM算法的推導(dǎo)非常詳細(xì),鏈接如下:

https://blog.csdn.net/zhihua_oba/article/details/73776553

Python實(shí)現(xiàn)

#coding=utf-8from numpy import *from scipy import statsimport timestart = time.perf_counter()def em_single(priors,observations): ''' EM算法的單次迭代 Arguments ------------ priors:[theta_A,theta_B] observation:[m X n matrix] Returns --------------- new_priors:[new_theta_A,new_theta_B] :param priors: :param observations: :return: ''' counts = {’A’: {’H’: 0, ’T’: 0}, ’B’: {’H’: 0, ’T’: 0}} theta_A = priors[0] theta_B = priors[1] #E step for observation in observations: len_observation = len(observation) num_heads = observation.sum() num_tails = len_observation-num_heads #二項(xiàng)分布求解公式 contribution_A = stats.binom.pmf(num_heads,len_observation,theta_A) contribution_B = stats.binom.pmf(num_heads,len_observation,theta_B) weight_A = contribution_A / (contribution_A + contribution_B) weight_B = contribution_B / (contribution_A + contribution_B) #更新在當(dāng)前參數(shù)下A,B硬幣產(chǎn)生的正反面次數(shù) counts[’A’][’H’] += weight_A * num_heads counts[’A’][’T’] += weight_A * num_tails counts[’B’][’H’] += weight_B * num_heads counts[’B’][’T’] += weight_B * num_tails # M step new_theta_A = counts[’A’][’H’] / (counts[’A’][’H’] + counts[’A’][’T’]) new_theta_B = counts[’B’][’H’] / (counts[’B’][’H’] + counts[’B’][’T’]) return [new_theta_A,new_theta_B]def em(observations,prior,tol = 1e-6,iterations=10000): ''' EM算法 :param observations :觀測(cè)數(shù)據(jù) :param prior:模型初值 :param tol:迭代結(jié)束閾值 :param iterations:最大迭代次數(shù) :return:局部最優(yōu)的模型參數(shù) ''' iteration = 0; while iteration < iterations: new_prior = em_single(prior,observations) delta_change = abs(prior[0]-new_prior[0]) if delta_change < tol: break else: prior = new_prior iteration +=1 return [new_prior,iteration]#硬幣投擲結(jié)果observations = array([[1,0,0,0,1,1,0,1,0,1], [1,1,1,1,0,1,1,1,0,1], [1,0,1,1,1,1,1,0,1,1], [1,0,1,0,0,0,1,1,0,0], [0,1,1,1,0,1,1,1,0,1]])print (em(observations,[0.6,0.5]))end = time.perf_counter()print(’Running time: %f seconds’%(end-start))

總結(jié)

到此這篇關(guān)于Python實(shí)現(xiàn)EM算法實(shí)例的文章就介紹到這了,更多相關(guān)Python實(shí)現(xiàn)EM算法實(shí)例內(nèi)容請(qǐng)搜索好吧啦網(wǎng)以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持好吧啦網(wǎng)!

標(biāo)簽: Python 編程
相關(guān)文章:
主站蜘蛛池模板: 91精品国产色综合久久不卡98 | 黄频免费在线观看 | 欧美成人高清视频 | 精品国产三级 | 成人夜晚看av | 免费观看亚洲 | 久久亚洲一区二区 | 成人精品久久久 | 久久一| av免费观看网站 | 成人黄色一级网站 | 午夜精品久久久久久久久久久久久 | 99亚洲精品| 国产做a| 亚洲a网 | 亚洲天堂中文字幕 | 精品国产一区二区三区久久久久久 | 在线国产一区二区 | 日韩午夜在线 | 国产一区二区三区在线免费 | 黑色丝袜脚足j国产在线看68 | 噜噜噜天天躁狠狠躁夜夜精品 | 99精品久久久久久久免费 | 欧美激情精品一区 | 国产高清视频一区二区 | 一级黄色毛片子 | 精品国产不卡一区二区三区 | 国产精品一区久久久久 | 亚洲成人一二区 | 日韩在线免费 | 免费一区二区三区 | 久久激情网站 | 欧美视频免费在线观看 | 免费99精品国产自在在线 | 亚洲国产成人久久综合一区,久久久国产99 | 欧美一区二区三区国产精品 | 一卡二卡久久 | 日韩免费 | 亚洲精品专区 | 国产精品成人网 | 中文字幕一区在线观看视频 |